Tetrahedron Letters No. 39, pp. 4735-4738, 1966. Pergamon Press Ltd. Printed in Great Britain.

THE ABSOLUTE CONFIGURATIONS OF ATHAMANTIN AND EDULTIN

Masao Nakazaki, Yoshiki Hirose and Kiyoshi Ikematsu Department of Chemistry, Faculty of Engineering Science Osaka University, Toyonaka, Osaka, Japan (Received 4 July 1966)

A thin layer chromatogram of the ethanolic extract of the seeds of <u>Selinum Monnieri</u> L. reveals the presence of several coumarins. From the extract, we isolated, beside osthol¹⁾ and oroselone²⁾, a new coumarin compound, $C_{21}H_{22}O_7$, m.p.144-146°, $[\alpha]_D^{23}$ +106.7°(<u>c</u> 1.71 in benzene), $[\alpha]_D^{25}$ +84.8°(<u>c</u> 1.76 in py-ridine). The close examination of its chemical behavior, however, disclosed the distinct similarity with edultin (I)a,

m.p.136-142°, $[\alpha]_0^{11}$ +41.5°(<u>c</u> 26.8 in pyridine), which was recently isolated by Mitsuhashi and Ito³⁾ from the root of <u>Angelica</u> edulis Miyabe. And the identity was established by the comparison of both samples.

It will be noted that athamantin (I)b and edultin (I)a share a similar structural feature and, from the biogenetical

4735

No.39

point of view⁴⁾, it is of interest to know their relative as well as absolute configurations.

Hydrogenolysis of edultin (I)a in acetic acid with palladium oxide afforded (+)-tetrahydrooroselol acetate (II)a which was hydrolyzed to (+)-tetrahydrooroselol (II)b, m.p. 113.5-114.2°, $[\alpha]_D^{26}$ +68.0°(<u>c</u> 1.11 in chloroform), identical with the one obtained by Schmid et al.²⁾ upon the same treatment of athamantin, indicating the same configuration at C₂; in both compounds.

When the acetate (II)a prepared from the purified (II)b was pyrolyzed (300°, 5 min.), there was obtained a mixture of unsaturated compounds, b.p.130-145°/0.01 mm, $(\alpha)_D^{23}$ +43.6°(<u>c</u> 1.44 in chloroform) whose n.m.r. spectrum⁵) showed the presence of the compound (III) with isopropenyl side chain at least in 60%. The mixture was then hydrogenated with palladium in ethanol to give (+)-hexahydrooroselone (IV), a semisolid with $(\alpha)_D^{25}$ +25.4°(<u>c</u> 1.02 in ethanol) after purification by chromatography on alumina.

We next attempted to secure (IV) with known absolute configuration. Gattermann's formylation of (-)-(R)-dihydrotubanol $(V)a^{6}$ prepared from rotenone,^{7,8} gave the <u>o</u>-aldehyde (V)b, b.p.95-107°/0.1 mm, $(\alpha)_{D}^{23}$ -149°(<u>c</u> 1.04 in ethanol)(semicarbazone, m.p.219-220°), together with <u>p</u>-isomer (V)c. m.p.132-133°. No.39

The former was heated with malonic acid, pyridine and aniline to yield (VI)a, m.p.188°, which was then decarboxylated by heating with copper chromite and quinoline to give the coumarin (VI)b, m.p.110-111°, $[\alpha]_0^{22}-97.8^\circ(\underline{c} \ 1.22 \ \text{in ethanol}).$

The final step was the facile hydrogenation of (VI)b to (-)-(IV), m.p.106°, $[\alpha]_{U}^{20}-72.0^{\circ}(\underline{c}\ 1.23$ in ethanol), whose infrared spectrum was superimposable on that of (+)-(IV) from edultin. Since (+)-(IV) from edultin was appearently optically impure (minimum optical purity: 35%), the enantiomeric relationship of (+)-(IV) with (-)-(IV) was further confirmed as follows. From an optically inactive solution prepared by adding 7.8 mg. of (-)-(IV) to a solution of 22.2 mg. of (+)-(IV)in petroleum ether, there were isolated 13.5 mg. of racemic (IV), m.p.97.5-99°, which was found identical with the racemic $(IV)^{2}$ prepared by catalytic hydrogenation of oroselone.

Schmid et al.²⁾ suggested the <u>cis</u>-configuration of two hydrogens at C_{21} and C_{31} of athamantin (I)b, because (I)b is to be thermally stable, and this was found also the case with edultin (I)a. The <u>cis</u>-configuration was further supported from the observation of the n.m.r. spectrum of edultin which indicated the coupling constant of 7 c.p.s. between these hydrogens. These findings established the (R)-configuration at C_{21} and the (R)-configuration at C_{31} in both edultin and athamantin.

REFERENCES

- 1) E. Späth and O. Pesta, Ber., 66, 754 (1933).
- O. Halpern, P. Waser and H. Schmid, <u>Helv. Chim. Acta</u>, <u>40</u>, 758 (1957).

- 3) H. Mitsuhashi and T. Ito, <u>Chem. Pharm. Bull.</u>, <u>10</u>, 511 and 514 (1962). We indebted to Professor Mitsuhashi, Department of Pharmacy, Hokkaido University, Sapporo, who generously provided a sample of edultin.
- 4) Summarized in W. D. Ollis and I. O. Sutherland, <u>Isoprenoid</u> <u>Units in Natural Phenolic Compounds</u>, in W. D. Ollis, <u>Chemistry of Natural Phenolic Compounds</u>, Pergamon Press, Oxford, 1961, p. 74.
- 5) All n.m.r. spectra were recorded on a JNMC-100 spectrometer (Japan Electron Optics Laboratory Co., Ltd.) using CDO1₃ as solvent and T.M.S. as internal standard.
- 6) S. Takei and M. Koide, Ber., <u>62</u>, 3030 (1929).
- 7) G. Büchi, J. S. Kaltenbronn, L. Crombie, P. J. Godin and
 D. A. Whiting, <u>Proc. Chem. Soc</u>., 274 (1960). G. Büchi,
 L. Crombie, P. L. Godin, J. S. Kaltenbronn, K. S. Sidalingaiah and D. A. Whiting, <u>J. Chem. Soc</u>., 2843 (1961).
- M. Nakazaki and H. Arakawa, <u>Bull. Chem. Soc. Japan, <u>34</u>
 453 and 1246 (1961).
 </u>